David Hilbert (23 de enero de 1862, Königsberg, Prusia Oriental – 14 de febrero de 1943, Gotinga, Alemania) fue un matemático alemán, reconocido como uno de los más influyentes del siglo XIX y principios del XX. Estableció su reputación como gran matemático y científico inventando o desarrollando un gran abanico de ideas, como la teoría de invariantes, la axiomatización de la geometría y la noción de espacio de Hilbert, uno de los fundamentos del análisis funcional. Hilbert y sus estudiantes proporcionaron partes significativas de la infraestructura matemática necesaria para la mecánica cuántica y la relatividad general. Fue uno de los fundadores de la teoría de la demostración, la lógica matemática y la distinción entre matemática y metamatemática. Adoptó y defendió vivamente la teoría de conjuntos y los números transfinitos de Cantor. Un ejemplo famoso de su liderazgo mundial en la matemática es su presentación en 1900 de un conjunto de problemas que establecieron el curso de gran parte de la investigación matemática del siglo XX.
En la pugna por demostrar correctamente algunos de los errores cometidos por Einstein, en la teoría general de la relatividad, David Hilbert se adelantó a las correcciones de Einstein, sin embargo nunca quiso otorgarse el mérito.
Hilbert propuso una lista muy influyente de 23 problemas sin resolver en el Congreso Internacional de Matemáticos de París en 1900. Se reconoce de forma general que ésta es la recopilación de problemas abiertos más exitosa y de profunda consideración producida nunca por un único matemático.
Tras reescribir los fundamentos de la geometría clásica, Hilbert podía haberlo extrapolado al resto de las matemáticas. Este enfoque difiere, sin embargo, de los posteriores 'fundacionalista' Russel-Whitehead o el 'enciclopedista' Nicolas Bourbaki, y de su contemporáneo Giuseppe Peano. La comunidad matemática al completo podría embarcarse en problemas que él identificó como aspectos cruciales en las áreas de la matemática que él considero como claves.
Lanzó el conjunto de problemas en la conferencia "Los problemas de la matemática" presentada durante el curso del Segundo Congreso Internacional de Matemáticos celebrado en París. Ésta es la introducción a la conferencia de Hilbert:
¿Quién entre nosotros no estaría contento de levantar el velo tras el que se esconde el futuro; observar los desarrollos por venir de nuestra ciencia y los secretos de su desarrollo en los siglos que sigan? ¿Cual será el objetivo hacia el que tenderá el espíritu de las generaciones futuras de matemáticos? ¿Qué métodos, qué nuevos hechos revelará el nuevo siglo en el vasto y rico campo del pensamiento matemático?
¿Quién entre nosotros no estaría contento de levantar el velo tras el que se esconde el futuro; observar los desarrollos por venir de nuestra ciencia y los secretos de su desarrollo en los siglos que sigan? ¿Cual será el objetivo hacia el que tenderá el espíritu de las generaciones futuras de matemáticos? ¿Qué métodos, qué nuevos hechos revelará el nuevo siglo en el vasto y rico campo del pensamiento matemático?
Presentó menos de la mitad de los problemas en el Congreso, que fueron publicados en las actas. Extendió el panorama en una publicación posterior, y con ella llegó la formulación canónica actual de los 23 Problemas de Hilbert. El texto al completo es importante, dado que la exégesis de las cuestiones puede seguir siendo materia de debate inevitable, cada vez que se preguntan cuántas han sido resueltas:
1. Problema de Cantor sobre el cardinal del continuo. ¿Cuál es el cardinal del continuo?
2. La compatibilidad de los axiomas de la aritmética. ¿Son compatibles los axiomas de la aritmética?
3. La igualdad de los volúmenes de dos tetraedros de igual base e igual altura.
4. El problema de la distancia más corta entre dos puntos. ¿Es la línea recta la distancia más corta entre dos puntos, sobre cualquier superficie, en cualquier geometría?
5. Establecer el concepto de grupo de Lie, o grupo continuo de transformaciones, sin asumir la diferenciabilidad de las funciones que definen el grupo.
6. Axiomatización de la física. ¿Es posible crear un cuerpo axiomático para la física?
7. La irracionalidad y trascendencia de ciertos números como e, 2v2, etc.
8. El problema de la distribución de los números primos.
9. Demostración de la ley más general de reciprocidad en un cuerpo de números cualesquiera.
10. Establecer métodos efectivos de resolución de ecuaciones diofánticas.
11. Formas cuadráticas con coeficientes algebraicos cualesquiera.
12. La extensión del teorema de Kronecker sobre cuerpos abelianos a cualquier dominio de racionalidad algebraica.
13. Imposibilidad de resolver la ecuación general de séptimo grado por medio de funciones de sólo dos argumentos.
14. Prueba de la condición finita de ciertos sistemas completos de funciones.
15. Fundamentación rigurosa del cálculo enumerativo de Schubert o geometría algebraica.
16. Problema de la topología de curvas algebraicas y de superficies.
17. La expresión de formas definidas por sumas de cuadrados.
18. Construcción del espacio de los poliedros congruentes.
19. Las soluciones de los problemas regulares del cálculo de variaciones, ¿son siempre analíticas?
20. El problema general de condiciones de contorno de Dirichlet.
21. Demostración de la existencia de ecuaciones diferenciales lineales de clase fuchsiana, conocidos sus puntos singulares y grupo monodrómico.
22. Uniformidad de las relaciones analíticas por medio de funciones automórficas: siempre es posible uniformizar cualquier relación algebraica entre dos variables por medio de funciones automorfas de una variable.
23. Extensión de los métodos del cálculo de variaciones.
Algunos se resolvieron en poco tiempo. Otros se han discutido durante todo el siglo XX, y actualmente se ha llegado a la conclusión de que unos pocos son irrelevantes o imposibles de cerrar. Algunos continúan siendo actualmente un reto para los matemáticos.
REALIZADO POR DIEGO NUÑEZ ALONSO 1º BACH A
REALIZADO POR DIEGO NUÑEZ ALONSO 1º BACH A
No hay comentarios:
Publicar un comentario